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I. INTRODUCTION 

A. Motivation for the Research 

The impact of computers on circuit analysis and design and the advent 

of new electronic devices and integrated circuits have generated renewed 

interest in nonlinear circuit theory. One of the most important and basic 

problems in the analysis of nonlinear circuits is to determine the dc solu­

tions (operating points) of resistive nonlinear networks containing two-

terminal linear resistors, nonlinear resistors that are characterized by 

v-i curves or a set of measured data points, independent voltage and cur­

rent sources, and the four types of the linear controlled sources. Non­

linear circuits differ from linear circuits in that they may have no 

solutions, an infinite number of solutions, a unique solution or several 

solutions. Research in nonlinear resistive networks is important not only 

because it is the key to the development of the analysis and design of 

integrated circuits but also because it serves as a prerequisite to the 

understanding of general nonlinear circuits and systems. A mastery of the 

basic concepts in nonlinear resistive networks is also crucial to a com­

plete understanding of dynamic networks. The study of nonlinear resistive 

networks therefore serves as means to an end rather than the end itself. 

For nonlinear resistive networks, new considerations are needed. A 

systematic method of formulation of the network equations must be followed, 

leaving less choice in circuit variables and methods of analysis than in 

linear network analysis. New methods of numerical solution must be 

developed, replacing the conventional techniques for linear systems. 

Unfortunately, for the more complicated nonlinear resistive networks, it 
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is difficult to determine the number of solutions that the network has; 

furthermore, there exists no general and practical method of obtaining 

analytic solutions. 

The advent of the high-speed digital computer has made the use of 

numerical methods for solving system of nonlinear equations not only feasi­

ble but also attractive. The numerical computation of the solutions of a 

nonlinear resistive network has been of considerable interest recently 

among network theorists and designers. Various methods are available and 

many computer programs exist. All the existing available methods and pro­

grams can be roughly classified into two principal groups. One is based 

on an iterative algorithm which is applied directly to the nonlinear net­

work equations. The most familiar one is the Newton-Raphson method. The 

other is based on the piecewise-linear approximation. One limitation in 

the Newton-Raphson method is that, if the initial guess is not close to 

the true solution, the algorithm may not converge. The other limitation 

is that, even if it converges to a solution, there is no way of knowing 

whether it is the only solution or whether it converges to a particular 

solution, assuming that the equation has multiple solutions. This limi­

tation is inherent in all known iteration methods. In the piecewise-linear 

algorithm there are also serious drawbacks. One is that at each break 

point a linear piecewise function is not differentiable. Furthermore most 

v-i curves are highly nonlinear j a Mgjier order inteirpolation is always 

necessary for improving accuracy. Existing algorithms for obtaining mul­

tiple solutions are restricted to use for simple v-i curves. It is diffi­

cult, if not impossible, to handle networks with elements that are charac-
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terlzed by self-intersecting unicursal v-i curves. 

B. Research Objectives 

Due to the limitations and drawbacks of the existing methods, a new 

technique, called the piecewise-cubic spline method, is developed in this 

dissertation for analyzing nonlinear resistive networks with multiple 

solutions. The main idea is that the v-i characteristic of the nonlinear 

resistor is interpolated by smooth piecewise cubic functions instead of 

piecewise linear functions. The method of using piecewise cubic spline 

approximations has its main advantage over other techniques when the non­

linear element Itself has comers or relatively sharp bends in the v-i 

curves. Thus the conditions of continuous first and/or second derivatives 

are met at the boundary. 

Spline functions are well-developed in the literature. Their supe­

rior properties for approximation are well-recognized. In case the v-i 

curve is a unicursal curve with self-intersections, this technique is 

extremely powerful and yet straightforward in obtaining the multiple 

solutions. Its beauty lies in the fact that it converts a multiple solu­

tions problem into a single solution problem. 

In analyzing the network each two-terminal nonlinear resistor is 

replaced by its Iterative piecewise-cubic spline equivalent circuit. This 

results in a simpler nonlinear single solution network and any Newton-llke 

method can be applied to obtain the solution. The final numerical solution 

is obtained by an iterative process of substitution and verification. The 

new procedure always converges so long as enough iteration steps are taken. 
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The number of iterations required depends heavily on the proximity of the 

initial guess to the correct solution. But this brings no problem since 

each spline segment approximates a smooth portion of the original curve 

and there are no sharp turns. 

C. Dissertation Outline 

In Chapter II some of the terms and definitions are introduced for 

the purpose of clarifying the meaning of terms that are pertinent for the 

understanding of the material found in the following chapters. Chapter III 

contains a literature review on nonlinear resistive networks with both 

unique and multiple solutions. The development of spline functions is 

introduced and some applications in engineering fields are listed. Chapter 

IV deals with the mathematical preliminaries, which include the general 

approximation theory, approximation by polynomials and spline functions. 

In Chapter V two algorithms are described for the computation of piecewise 

spline functions with both fixed and variable knots. Chapter VI considers 

the procedures used for the application of spline function techniques in 

the analysis of nonlinear resistive networks. Two methods of analysis are 

discussed, nodal analysis and hybrid analysis. Chapter VII presents 6 

illustrative examples in which the spline function technique is applied to 

the analysis of various nonlinear resistive networks. 
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II. TERMS AND DEFINITIONS 

In this chapter some of the terms and definitions that are pertinent 

for the understanding of the material found in the following chapters are 

introduced. The definitions that the author gives are those of the refer­

ences cited. They are thought to be the most standard representation. 

1. [1] A spline is a mechanical device, used by draftsmen to draw 

a smooth curve,consisting of a strip or rod of some flexible 

material to which weights are attached, so that It can be con­

strained to pass through or near certain plotted points on a 

graph. 

2. [2] A unicursal curve is a curve P*in the x—y plane having the 

property that, if starting with one end of [~" (possibly at -»), 

it is possible to trace the entire curve in one continuous 

stroke without lifting the tip of the pencil from the paper and 

without retracing any portion of the curve. 

3. [2] The operating point of a network N is a set of numbers 

which is a solution of network equations. 

4. [2l A dc-network is a network which contains only dc sources. 

5. [2] A dc-resistlve network is a network which contains only dc 

sources, linear and nonlinear resistors. 

6. [2] A plecewlse-llnear function is a function made up of a 

sequence of linear Interpolation functions. 

7. [2] A unicursal element is an element which is characterized 

by a unicursal curve. 

8. [2] A voltage-controlled element is an element whose current 
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and voltage are related by the equation i = f(v). 

9. [2] A current-controlled element is an element whose voltage 

and current are related by the equation v = f(i). 

10. [2] A self-intersecting unicursal curve is any unicursal curve 

which intersects itself at some points. 

11. [3] A bistable circuit is a circuit which has at least two 

stable equilibrium states. 

12. [1] The knots of the spline function are a set of points at 

which the piecewise functions are joined. 
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III. LITERATURE SEARCH 

A. Nonlinear Resistive Networks 

1. Networks with unique solutions 

Consider networks in which only two-terminal linear and nonlinear 

resistors and independent sources are present. Duffin [4] proved several 

basic theorems for such networks. However, Duffin restricted his atten­

tion to voltage-controlled resistors. For resistive networks containing 

strictly monotonically increasing voltage- or current-controlled elements, 

an early attempt at dealing with such networks is contained in a paper by 

Desoer and Katzenelson [5]. They also proved several useful theorems. A 

totally different type of approach to this problem is considered by Sand-

berg and Willson [6, 7] where necessary and sufficient conditions for the 

existence of a unique solution of the network equations are determined. 

They show that the problem of determining a solution for the network is 

equivalent to the problem of solving the equation 

The symbol A and B denote nxn matrices of real numbers, and c_ denotes a 

real n-vector. Willson [ 8] also derived some new theorems on the equa­

tions of nonlinear dc transistor networks. Fujisawa and Kuh [9] derived 

sufficient conditions for the existence of a unique solution of the equa-

df  
tion f(x) = F(x) +  P i x =  y  in terms of the Jacobian matrix J(x) = . It 

is shown that if a set of cofactors of the Jacobian matrix satisfies a 

"ratio condition", the network has a unique solution. 

AF(x) + Bx = c (3-1) 

f (x ))^, X. (i = 1 ... n) are the port variables 
n n / 1 
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The operating point problem of nonlinear circuits has been discussed 

in the book by Chua [2]. Two survey papers by Kuh and Hajj [3] and Willson 

[10] Rave a detailed review on the developments of nonlinear network theory. 

Wu [11] Investigated the operating point problem by using the degree of 

mapping. In a recent paper, Chua and Wang [12] have applied the degree 

theory to the analysis of a large class of resistive nonlinear networks. 

They studied the structure of the network equations by homotopy of odd 

fields. The form of network equations together with some circuit-theoretic 

conditions, such as eventual passivity, form a network function which is 

homotopic to an odd field. Most existing theorems relating to nonlinear 

resistive networks can be proved by this new approach. They consider that 

the concept of eventual passivity is much more basic than the so-called 

eventual increasIngness. Nielsen and Willson [13], in their recent paper, 

show how transistor networks can be broken apart into smaller subnetworks, 

and deduce that the original circuit possesses a unique solution to its dc 

equations as a consequence of the uniqueness of the solutions to the dc 

equations of the subnetworks. 

2. Networks with multiple solutions 

As for the networks with multiple solutions there is still no practi­

cal general theory. General methods for determining the number of solu­

tions possessed by the equations of a given network are needed. Chua [14] 

developed two coiiq>uter algorithms using piecewlse-linear methods for finding 

the dc solutions of resistive networks containing two-terminal linear and 

nonlinear resistors, independent dc voltage and current sources, and 

linear controlled sources. In his method all nonlinear resistors must be 
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represented by piecewise-linear curves, which are tedious and time con­

suming at the beginning. Chao, Liu and Pan [15] develop a systematic 

search method for obtaining multiple solutions of simultaneous nonlinear 

equations. The method is based on numerical integration of the associated 

system of differential equations f= -f^ for i = 1, 2, n - 1 and 

f^ = + f^ along the space curve of intersection f\(x) =0, i = 1, 2, .... 

.... n - 1. The plus or minus sign is chosen so as to make move in 

the desired direction on &. Chua and Ushida [16] formulate an algorithm 

for finding multiple solutions of a system of nonlinear algebraic equa­

tions. The algorithm consists of solving an associated system of first 

order differential equations whose independent variable may be switched 

from one variable to another during each integration step. Unfortunately, 

none of these algorithms can solve nonlinear resistive networks whose 

nonlinear elements are characterized by unicursal curves with self-inter­

sections. 

B. Spline Functions 

Spline functions are a class of piecewise polynomial functions satis­

fying continuity properties only slightly less stringent than those of 

polynomials, and thus they are a natural generalization of polynomials. 

They are found to have highly desirable characteristics as approximating, 

interpolating and curve-fitting functions. Spline functions were first 

considered from a mathematical viewpoint by Schoenberg in 1946 [17] and 

became the object of rather intensive research in the late 1950's. In 

the I960's spline functions had attracted wide attention. In October 1968 

an advanced seminar [1] was held at Wisconsin Center on the campus of 
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the University of Wisconsin, in Madison. The purpose of this seminar was 

to make a general survey of the most interesting and useful available 

information about spline functions and to instruct Army mathematicians in 

the more fundamental aspects of the theory and applications of spline 

functions. During the past decade numerous papers and books developing 

the theory of interpolation and approximation by spline functions [18, 1, 

19, 20] have appeared. Concurrent with this theoretical development there 

has been considerable interest in practical algorithms [21, 22] for the 

computation of splines. 

The intensive research is motivated by the following two facts; 

First, spline functions have certain mathematical properties that might 

well place them at the center of future developments in some areas of 

applied mathematics and numerical analysis. Second, they are the most 

successful approximating functions for practical applications so far 

discovered. The ordinary polynomials are inadequate in many situations. 

This is particularly the case when one approximates functions which arise 

from the physical world rather than from the mathematical world. Func­

tions which express physical relationship are frequently of a disjointed 

or disassociated nature. In other words, their behavior in one region 

may be totally unrelated to their behavior in another region. Polynomials, 

along with most other mathematical functions, have just the opposite 

property. Their behavior in any small region determines their behavior 

everywhere. Splines do not suffer this handicap since they are defined 

piecewise; for n > 3, they represent nice, smooth curves in the physical 

world. The main mathematical interest of spline curves centers around 
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their properties of interpolation and the minimization of certain norms 

[18] so that these interpolatory functions are, in some sense, best approx­

imations to a given function. 

The survey paper of de Figueiredo [20] made a general review of spline 

functions, describing some of the results and applications. Spline func­

tions are applied in the following areas; (1) control theory, (2) optimal 

signal reconstruction and design, (3) simultaneous interpolation or 

smoothing in time- and frequency-domains, (4) pattern recognition, 

(5) stochastic processes and estimation theory, (6) digital filtering 

and simulation, (7) modeling of nonlinear solid state devices, (8) system 

modeling and identification. 
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IV. MATHEMATICAL PRELIMINARIES 

A. Introduction 

The problem of approximation of a real continuous function f(x) by an 

approximating function P^(x) requires answers to two important questions. 

The first is the type of approximating function to be used, and the second 

is how the "quality of an approximation" is to be measured. Needless to 

say it is very desirable for the approximating function P^(x) to be com­

patible with f(x). The problem of approximation must also be considered 

from different points of view. Sometimes experimental results, given in 

the form of either a curve or a table, must be used; sometimes a compli­

cated mathematical expression must be replaced by a simpler and more easily 

treated form. 

The general approach to the approximation problem consists of the 

following steps: 

1. The first step is to translate the intuitive or practical problem 

into a mathematically precise form. This means that one must choose the 

approximating function. This step is the most important of all the steps 

toward obtaining an approximation. Poor choices at this point can make 

severe difficulties unavoidable, no matter how talented one may be at 

mathematical analysis. 

2. The second step is to check the existence and uniqueness of the 

solution. 

3. The third step is to find the "special" characteristics, if any, 

of the solution. 

4. The final step is the computation of the solution. 
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B. General Approximation Theory 

If we consider approximation by polynomials, let us ask ourselves 

what the effect will be for a fixed f(x) of increasing the degree of the 

approximating polynomial. This problem was originally proposed and 

solved by Weierstrass in 1885. If f(x) is continuous, it is possible to 

make the error of approximation arbitrarily small by increasing the degree 

of the approximating polynomial. The Weierstrass approximation theorem 

is stated as follows: 

Theorem 1: [2, 23] 

Let f(x) be a continuous curve representing a function over some 

interval a < x < b. It is always possible to find a polynomial P (x) of 

sufficiently high degree that the magnitude of the discrepancy between 

P^(x) and f(x) is less than any prescribed positive number for all values 

of x within the interval (a, b). 

Stated mathematically 

jP^Cx) - f(x)j < e (4-1) 

where e is any arbitrary small positive number. 

Chua [2] in his book has another related theorem called combined 

interpolation and approximation theorem. It is stated as follows: 

Theorem 2: 

A polynomial P^(x) of sufficiently high degree can always be found 

that satisfies not only the Weierstrass approximation theorem but also 

the additional requirement that it pass through an arbitrarily prescribed 

finite set of points having distinct abscissas. 
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C. Approximation by Polynomials 

1. Types of approximation 

There are, generally, five frequently used conditions imposed on 

the polynomial approximation, depending on the use [24]. They are: 

(1) The polynomial should approximate the given curve as closely as 

possible at one point a. This requirement means that the polynomial must 

go through the point a and that as many of its derivatives as possible 

must be equal to those of the given curve. This type of approximation 

is shown in Figure la. Mathematically, these conditions may be written 

in the fonn 

p(l)(a) - f(i)(a) = 0 i = 0, 1, 2, n. (4-2) 
n 

(2) The polynomial should cross the given curve at several dis­

tinct points in the interval; no conditions are given for its behavior 

between these points. An approximation of this type is shown in Figure 

lb. The mathematical expression for it is 

P^(x^) - f(x^) =0 i = 0, 1, 2, n. (4-3) 

(3) The coefficients of the polynomial are found from the condition 

that the area enclosed by the qth power of the difference [P^(x) - f(x)] 

should be minimum. An approximation of this type is called a mean approx­

imation and is shown in Figure 2a for q = 2. The mathematical expression 

is 

f. F = min / [P (x) - f(x)]^ dx (4-4) 
n 
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(4) The polynomial is chosen so that, in the given interval, it 

never crosses the curves drawn at a distance + e parallel to the function 

being approximated. This distance diminishes as the degree of the poly­

nomial is increased. An approximation of this type is called uniform as 

shown in Figure 2b and is expressed mathematically by the inequality: 

max P (x) - f(x) 
n 

< e . (4-5) 
n 

(5) The polynomial is chosen so that its values oscillate above 

and below the given curve with equal maximum deviations. Its graph is 

similar to that shown in Figure 2b, the only difference being that the 

polynomial just touches the line with all its peaks. A mathematical 

expression for this type of approximation may be written as 

max P (x) - f(x) 
n 

= E. (4-6) 

2. Interpolation and approximation formulas 

There are several forms of interpolating polynomial and approximating 

formula which are used on computers. 

a. Lagrange form interpolation polynomial [25] Let 

be n + 1 distinct points on the real axis and let f(x) be a real-valued 

function defined on some interval I = [a, b] containing these points. It 

is desired to construct a polynomial P(x) of degree _< n which interpolates 

f(x) at the points XQ x^, that is, which satisfies 

P(x^) = f(x J i = 0 n (4-7) 

The Lagrange form of the interpolating polynomial is one such poly-
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f (x) 

P (x) 

a X 

Figure la. Approximation at one point 

f(x) 

P_(x) 

b X X, X X, a 3 2 1 0 

Figure Ib. Approximation at several points 
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f (x) 

P (x) 

/ [f(x) 

Figure 2a. Mean square approximation 

f(x) 

P (x) 

b a 

Figure 2b. Uniform approximation 
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nomial and can be expressed in the following form: 

n 
P (x) = Z f(x.)&.(x) (4-8) 
" i=0 1 ^ 

n 
where &.(x) = tt (x - x.)(x. - x.) 

^ j=0 J 1 J 

jfi 

For example when n « 1 

P^(x) = fCxgX&QCx) + f(x^)&^(x) 

f(x.) - f(x ) 

= f+ X. - X ° - "0>• (4-9) 

The Lagrange interpolation procedure is not good because, for some 

analytic functions on I, the Lagrange interpolation polynomials, defined 

with respect to uniform meshes, diverge [26, 27]. A more serious objec­

tion to the Lagrange form arises from the uncertainty as to how many 

interpolation points are needed in order to find a satisfactory approxi­

mation P^(x) to f(x). Additional interpolation points require a higher 

degree of interpolating polynomial. Another difficulty is that the pre­

vious available information of ^(x) is not used in calculating P^(x), 

and this is a waste. This formula corresponds to type (2) approximation. 

b. Newton form interpolation polynomial [25] The Newton 

form interpolation polynomial overcomes the drawbacks encountered in the 

Lagrange form interpolation. This form is given by the following expres­

sion. 
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Pj^(x) = + f[xQ...Xj^]Cx - Xq)Cx  - x^) ... (x -

(4-10) 

where f[x^...x^] is called the kth divided difference of f(x) at the 

points XQ x^. 

The Newton form interpolation polynomial is formally given by; 

P^(x) = ffXg] + f[XQ, x^](x - XQ) + f[XQ, x^, XgjCx - XQ)(x - x^) 

+ .... f [XQ 9. x^ y «... Xj^l (x Xg) (x x^^)... Cx x^ 2) * 

(4-11) 

In compact form it can be represented by: 

n i-1 (4-12) 
P^(x) = Z f[Xp x^] jgQ (x - Xj) 

if we make use of the convention that 

for r < s 

for r > s 

(4-13) 

For example, when n = 1 we get that 

Pj^(x) = fCXg] + f[XQ, x^](x - Xq) (4-14) 

which is the same expression as Equation (4-9). 

The interpolation error e^(x) of Pjj(x) is given by 

e^(x) = f(x) - P^(x). (4-15) 
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Let X be any point different from **n' the 

polynomial of degree _< n + 1 which interpolates f(x) at XQ, and 

at X, then (x) = f(x). From Equations (4-10) and (4-12) we get 

_ n _ 
P ., (x) = P (x) + f[x_...x , x] TT (x - X.). (4-16) 
n+1 n Un j_Q ] 

Therefore, for all x 4 x^...x^: 

n 
e (x) = f[x_...x , x] TT (x - X.). (4-17) 
" 0 * j=0 J 

This formula corresponds to type (2) approximation. 

c. Taylor series expansion The Taylor series expansion method 

imposes conditions on the behavior of the polynomial at one point. The 

approximation at this point is particularly good, but there are no means 

of controlling the behavior of the polynomial away from this point. 

The Taylor series for f(x) about x = a is defined as 

2 
f (x) = f (a) + f ' (a) (x - a) + -—+ ... 

+E (4-18) 
(n-l); n 

f^"^ (x )(x - a)* 
where R = : , a < x^ < x, (4-19) 

n n I — U — 

is called the remainder and where it is supposed that f(x) has derivatives 

of order n, at least. 

When the interval is sufficiently small, higher power terms can be 



www.manaraa.com

21 

neglected. Thus we have 

f(x) = f(a) + f'(a)(x - a) (4-20) 

Taylor series expansion provides the analytic basis for obtaining 

the piecewise-linear approximation of the nonlinear v-i characteristics. 

This formula corresponds to type (1) approximation. 

D. Piecewise Polynomial Approximation 

The graphical method used in analyzing the simple nonlinear series 

and parallel networks is convenient. It is applicable to many practical 

nonlinear resistive network problems. Unfortunately, these graphical 

methods are not general enough to handle the more complicated non-series-

parallel networks containing one or more nonlinear three-terminal resis­

tors. Neither are they applicable to nonlinear networks containing con­

trolled sources. Because of the above limitations, it is necessary that 

more general methods of. analysis be found. 

Generally there are two objections to polynomial approximation. The 

first one is that a large number of points must be used in the calcula­

tion and evaluation of the interpolating polynomial and thus it becomes 

costly and unreliable for large number of interpolation points. The 

second objection is that the higher the degree of the Interpolating 

polynomial the greater the interpolation error [25] because interpolation 

error depends both on f(x) and the Interpolation points. 

1. Piecewise-linear interpolation 

A simple and familiar example of piecewise polynomial interpolation 

is linear interpolation in a table of values f(x^) 1 = l...n + 1, where 
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a = < Xg < x^^^ = b. Here f(x) is approximated at a point x by 

locating the interval [x^^ ^+1^ which contains x and then taking 

P^(x) = f(x^) + f[x^, x^^^](x - x^) (4-21) 

as the approximation to f(x), f(x) is approximated by "broken line" or 

"piecewise-linear function" g^(x) with break points x^ x^ which 

interpolates f(x) at x^ *n+l' 

At present the piecewise-linear method [23] is the only practical 

method of analysis for nonlinear resistive networks with multiple solu­

tions- Though this method can be applied to any nonlinear network if 

sufficiently small intervals are taken, it has several drawbacks. It is 

not efficient as far as computer time is concerned and also has diffi­

culties when dealing with the highly nonlinear unicursal v-i characteris­

tics curves with self-intersections. 

2. Piecewise-cubic interpolation [25, 1] 

The piecewise polynomial interpolation overcomes many of the diffi­

culties associated with piecewise linear approximation. The concept of 

piecewise-polynomial interpolation is first to partition the predetermined 

interval into subintervals and then approximate f(x) in each subinterval 

by a suitable polynomial. With smaller intervals the interpolating error 

becomes small. 

A piecewise-polynomial function P^(x) of degree m > 1 can produce 

approximations to f(x) whose errors are much smaller than those of piece-

wise-linear interpolation. A special name of "spline" or "spline func­

tion" is given to the interpolant P^Cx) (use S(x) hereafter) whose graph 
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approximates the position that a draftman's spline (i.e., a thin flexible 

rod) would occupy if it were constrained to pass through the points 

{x., f.}, i = 1 n+1. The draftman's spline is shown in Figure 3. A 

formal definition for a spline function is given below. 

DEFINITION: 

Given a strictly increasing sequence of real numbers, x^xg...^^ a 

spline function S(x) of degree m with the knots is a function 

defined on the entire real line having the following two properties: 

(1) In each interval (x\, x^^^) for i = 0, 1, n (where x = -°° 

and x^^^ = oo), S(x) is given by some polynomial of degree m or less. 

(2) S(x) and its derivatives of orders 1, 2 m-1 are continuous 

everywhere. 

Thus, a spline function is a piecewise polynomial function satis­

fying certain conditions regarding continuity of the function and its 

derivatives. In general S(x) is given by different polynomials in ad­

joining intervals (x^ x^) and (x_, x^^^). For m > 0, a spline func-

tion of degree m could equally well be defined as a function C whose 

mth derivative is a step function. 

As mentioned before we can always interpolate a given function at 

four points by a cubic polynomial. Different interpolation methods 

differ only in how the end conditions are specified. The general form 

of piecewise-cubic function in interval [x\, is 

S.(x) = C - + C .(x - x . )  + C„ (x - x  )^ + C (x - x 
z l  j l^x  ^  )  1  1  x  4  )  x  x  

(4-22) 
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where C. . j = 1...4 are the coefficients of the spline function. 
J »i 

For a given set of data points 

(x^, yj), (Xg, 72^» (*3' y^) Yjj) 

let a < X- < X- < X < b holds. 
— 1 2 n — 

Let and be two sets of nonnegative Integers, each contained in 

the set {l, m-l}, where m ̂  n. 

We shall require S to satisfy the conditions 

S(x^) = (i = 1, 2, ... n) 

s(^)(a) = y(^) (r e I^) (4-23) 

s(f)(b) = y^'^ (r e X^) 

a. Plecewise-cubic Hermlte interpolation In piecewise-cubic 

Hermlte interpolation, one determines S^(x) so as to interpolate f(x) at 

X., X., X.,, , X.. - with respect to mesh a < x, < x_ x < b and 
1 1 1+1 1+1 — 1 2 n — 

to satisfy 

S(x^) » f(x^) (1 = 1, ... n) 

S*(x^) = f'(x^) (4-24) 

Hermlte interpolation procedure is fourth order accurate [25, 28] 

and is a C^-function. Piecewise-cubic Hermlte interpolation requires 
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knowledge of f ' (x) 1=1» n+1. 

b. Piecewise-cublc spline interpolation In piecewise-cubic spline 

interpolation one determines S^(x) so as to interpolate f(x) at x^, x^^^ 

with respect to mesh a ̂  x^ < x^ *n — ̂  to satisfy 

S(x^) = f(x^) (i "1, ••• n) 

S^_l(Xi) = S^(x^) (4-25) 

S-iCXi) = S^(xp 

Piecewise-cubic spline interpolation procedure is also fourth order 

2 
accurate [25, 28] and is a C -function. This procedure is an improvement 

over the piecewise cubic Hermite interpolation procedure in the sense 

that It yields a smoother interpolate. Moreover, the spline Interpolate 

depends on roughly half as many parameters as the piecewise cubic Hermite 

Interpolate [28]. 
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V. SOME ALGORITHMS FOR SPLINES 

Numerous papers have appeared during the last decade for the develop­

ment of the theory of interpolation and approximation by spline functions. 

Concurrent with this theoretical development, there has been considerable 

interest in practical algorithms for the computation of splines. 

A. Least Squares Approximation by Cubic Splines - Fixed Knots [1] 

The algorithm for fixed knot least square approximation by cubic 

spline can be briefly stated as follows: 

A basis for the cubic spline functions is established and then a 

modified Gram-Schmidt process is applied to obtain an orthonomal basis. 

The least squares approximation is computed from the orthonomal basis. 

Knots can be added to or deleted from the knot set and a new approximation 

computed. A new value can be given for one knot and a new approximation 

computed. 

Consider the uniform approximation of an f £ C[a, b] by the class of 

spline functions of degree m with k prescribed knots a = x^ < x^ < ...< 

x^ < x^^^ = b defined by 

in each of the intervals (x_, , i = 0, 1, ..., k^ (5-1) 

Here i t  denotes the class of polynomial of degree at most m. 
m 

With the above notations the fixed knot least squares approximation 

problem can be stated mathematically as follows: 
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Given f £ C[a, b] determine S s k^*l' *"^k^ such that 

f - S ' f '  [f(x) - S (x)]^ dx < f - S (5-2) 

for every S E (x^...x^), 

B. Least Squares Approximation by Cubic Splines - Variable Knots [29, 1] 

This algorithm uses the fixed knot algorithm in order to determine 

the optimal knot locations. Each knot is, in turn, varied so as to mini­

mize the least squares error as a function of this knot. This process is 

started with the right most interior knot and proceeds sequentially to the 

left. Iteration continues until a termination criterion is met. 

Stated mathematically: 

Let ^ be the class of splines of degree m with some k knots 

(allowing multiplicities) defined as before. 

Given f £ C[a, b] determine S e k^*l' *" *k^ such that 

1 2 = ' '  f - S •/: [f(x) - S*(x)]^ dx < f - S (5-3) 

for every S € V 
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VI. PROCEDURES FOR THE APPLICATION OF SPLINE FUNCTIONS IN THE 
ANALYSIS OF NONLINEAR RESISTIVE NETWORKS 

A. Approximation of Two-Terminal Nonlinear Resistor by Piecewise Cubic 
Spline Functions 

In nonlinear resistive networks the v-i characteristic of the non­

linear resistors may be represented either by an analytic function or a 

set of experimental data points. The following are the procedures taken 

to approximate the v-i curve by piecewise-cubic spline functions. 

1. Current-voltage characteristic is represented by an analytic function 

1. Select proper knots: Since the successful use of splines for the 

purpose of providing a smooth approximation to a given set of points 

depends strongly on the placement of knots, this step is the most impor­

tant. The number of knots is determined by the shape and the complexity 

of the curve. The curves between the knots are generally smooth. Thus 

the knots are generally selected near the maximum and minimum points of 

the function f(x) so that fewer piecewise cubic spline functions are 

required to find the optimal knot locations. 

2. Calculate the corresponding f(x^) for each x^ (i = 1. n) 

3. Calculate the coefficients C. . (i = l...k-l, j = 1....4) 
» J 

4. By using Equation (4-22) and with C. .'s, write out the spline 
1J J 

functions in each interval. 

2. Current-voltage characteristic is in the form of an experimental curve 

In general the v-i characteristic curves of two-terminal nonlinear 

resistors are the following two types, simple unicursal curves and uni-

cursal curves with self-intersections as shown in Figures 4 and 5. In 

order to study networks containing such elements analytically, it is 
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a. Mutually well-defined b. Current-controlled 

Voltage-controlled d. Mutually ambiguous 

Figure 4. Simple unicursal curve 
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Self-intersection a. 

b. Forming a closed loop 

Figure 5. Unicursal curve 
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necessary to obtain a mathematical representation of the curves. The 

mutually ambiguous simple unicursal curve and the unicursal curve with 

self-intersections can be represented either as a voltage-controlled or 

current-controlled element by using the piecewise-cubic approximation 

technique. This gives a freedom of choice in the analysis of a network 

and might also avoid some difficulties caused by the topological restric­

tions in the network. 

1. Select proper knots: In this case knots (x^, ...Xj^) are 

properly selected according to the shape of the curve, usually at the 

points where the curve is bending or changing directions. Care must be 

taken in case of the unicursal curve with self-intersections. In approxi­

mating this type of curve by piecewise cubic functions the curve is 

divided into several sections, each of which must be a functional curve. 

The number of sections is determined mainly by the complexity of the 

curve. Since the knots selected must be ordered, each section has its own 

sequence of knots. Of course adjacent sections share one common knot. 

2. Obtain the corresponding y^'s for each x^: This is obtained 

directly from the curve or from the table given. 

3. Calculate the coefficients C^^'s of the piecewise spline func­

tions . 

4. By using Equation (4-22) and with the CL^'s, write out the spline 

functions in each interval. 

B. Analysis of Nonlinear Resistive Networks by Piecewise Spline Function 

Techniques 

The analysis of nonlinear resistive networks consists of two inde-
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pendent problems: (1) formulating the nonlinear equilibrium equations 

with the help of topological formulas, and (2) solving these nonlinear 

equations by appropriate numerical techniques. It is assumed that the 

nonlinear resistive networks to be analyzed have already been transformed 

to one containing only 2-termlnal resistors. Due to the different char­

acteristics of elements two types of nonlinear network analysis methods 

currently exist, nodal analysis and hybrid analysis. 

1. Nodal nonlinear network analysis by spline function techniques 

This type of analysis is suitable for the network consisting of 

linear resistors, voltage-controlled nonlinear resistors. Independent 

sources, and linear or nonlinear voltage-controlled current sources. This 

restriction will allow a straightforward generalization of the nodal equa­

tion for computer solution. 

Topological formulation of nodal equations; Consider each branch "k" 

as shown in Figure 6a of a network graph as representing a composite branch 

made up of a two-terminal element b^, an independent voltage source with 

terminal voltage E^, and an independent current source with terminal cur­

rent J^, as shown in Figure 6b. The two-terminal element b^ can be either 

a voltage-controlled nonlinear resistor 

Hi " «k<V (6-1) 

or a voltage-controlled current source characterized by 

H •  Skh) (6-2) 

Equations 
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a. Graph for composite branch k 
b. Composite branch k 

Figure 6. Composite branch of nonlinear resistive network 
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(6-1) and (6-2) can be combined into the following compact vector form; 

i = 

f 
i 

A &(v) (6-3) 

where v , v-, ... may be any branch voltage v., v , .. 
ci p P i- i-

From the composite branch. 

. V, 

V = V - E 

i - i - J 

(6-4) 

(6-5) 

From Kirchhoff's current law (KCL), 

Ai » 0, (6-6) 

where A is an nxb reduced incidence matrix obtained from the complete 

incidence matrix A^ by deleting the row corresponding to the datum node. 

Substituting Equation (6-5) into Equation (6-6) gives 

Ai » A J. (6-7) 

Substituting Equation (6-3) for in Equation (6-7), gives 

^(v) " A J (6-8) 
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Substituting v from Equation (6-4) into Equation (6-8) 

A^O(v + E) = A J (6-9) 

The symbol "0" is called the composition operation; whenever it 

appears, the quantity to its right is to be interpreted as the argument of 

the function appearing on its left. 

Let V = A^v (6-10) 
— —n 

where is the node-to-datum voltage vector. Substitute Equation (6-10) 

for V into Equation (6-9) to obtain the following nodal equations for non­

linear resistive networks 

Ago (A^v^^ + E) = A J. (6-11) 

For an (n + l)-node network. Equation (6-11) represents a system of 

n nonlinear nodal equations in term of the n node-to-datum nodal voltages. 

If we denote the vector v^ by 3c, Equation (6-11) can be written in the 

form 

f(x) = 0 (6-12) 

where 

f(x) A A^0(A^x + E) - A Jy (6-13) 

Once v^ is found, v can be computed using Equation (6-10), and v and 

^ can be computed from Equations (6-4) and (6-5). 
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2. Hybrid nonlinear network analysis 

Nodal analysis does not apply to networks containing current-controlled 

resistors or controlled voltage sources. A generalized method of analysis, 

called hybrid analysis, that includes both current and voltage-controlled re­

sistors, independent sources, and all four types of linear-controlled sources, 

may be utilized. This method of analysis must include both currents and vol­

tages as unknown variables - hence the name hybrid analysis. Once the hybrid 

equations are formulated, they can be solved by iterative techniques. In the 

piecewise-cubic spline technique a special procedure will be followed as will 

be explained later. 

Let N be a nonlinear resistive network containing linear and nonlinear 

(both voltage- and current-controlled) resistors, constant independent vol­

tage and current sources, and all four types of linear controlled sources. 

Assume that the non-monotonic voltage-controlled resistors do not form loops, 

and that the non-monotonic current controlled resistors do not form cutsets. 

If unicursal elements with mutual ambiguity are in the circuit it is always 

possible to avoid the above situation by proper choice of controlled variable 

by using piecewise spline technique. For example, if the unicursal element 

is in the voltage loop, consider this element as a voltage-controlled non­

linear resistor and approximate its v-i curve accordingly. Or if it forms 

cutsets, consider it as current-controlled nonlinear resistor. 

Let a hybrid m-port N as shown in Figure 7 be formed by extracting 

all voltage-controlled resistors across the m^ voltage ports and by 

extracting all current-controlled resistors across the m^ current ports, 

where m = m^ + m2. The remaining elements in the m-port N consist only of 

linear resistors, constant independent sources, and linear controlled 
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ml 

-*—o-

+ + 

v„ v„ 

i:: 
ml ml 
rt-o—*-
-f -H 

< v  1 v  
f ml ml 

1 ~ 3:— 

N 

Linear m-port containing 
linear resistors, inde­
pendent voltage and cur­
rent sources, and all 
four types of linear-
controlled sources 

ml+1 

ml+1 

^ml+l ^ml+l 

ml+1 

\l+2 ^ml+2 
—i»—o—>-

+ 
%l+2 > 2  ̂nil+2 

^ml+m2 ^ml+m2 

-o—*. 

-f-

ml+m2 

= v  
ml+m2 

3— 

•ml+m2 

Figure 7. Nonlinear resistors of a network N are extracted and shown 
connected across m=ml+m2 ports of a linear m-port 
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sources. There is freedom in extracting a unicursal element with mutual 

ambiguity as a voltage-port or a current port. 

Refer to the m-port of Figure 7, where the voltage ports have been 

labeled as port 1 to port m^, and the m^ current ports have been labeled as 

port + 1 to port m^^ + mg. Define the following port voltage and current 

vectors : 

4A 

v .  

m 

m. 

A 

m^+l 

m^+2 

ii A 

m^+1 

mj^+2 

m^+mg 

(6-14) 

(6-15) 

Let m be the vector representing the independent sources inside N. 

Since N contains only linear resistors, independent sources, and controlled 

sources, the port voltages and currents may be related by a hybrid matrix 

H and a source vector S as follows. 

f \ ' \ 

= H 

1 4 

+ ÔG = H 

& 
+ s (6-16) 
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where ̂  = Nu^ 

The matrices H, M, and vector 2 in Equation (6-16) can be partitioned 

according to the dimensions of ̂  and as follows: 

«W 

«IV 

«W «VI 

«IV 

®VI 

«II 

H. 
II 

\ / \ / i j  4 
+ 

i_ 
-I I 

/ < 

m 

\ / > 
r-

+ k 4 
/ •k 4 

(6-17) 

where ^ - V and = MjU. 

To obtain the hybrid equations, the v-i curves of the voltage- and 

current-controlled resistors are denoted by 

and 

Iv A 

^ l â  

/
 

^2 §2 (Vg) 

i 
"l 

k > 

f " 

%^+l 

^m^+2 

V 
m, +m_ 
1 2 

^ 0 K 

^m^+l ^^m^+1^ 

^m^+2 

A 

(6-18) 

(6-19) 
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Substituting = i^ A ̂ (v^) 

A lidi) 

'v ° 'v 

into Equation (6-17) gives 

By(2v> - " ®Vlil ~ " (6-20) 

lldl) - - fijili - li = 0 C6-21) 

Equations (6-20) and (6-21) constitute m = + mg independent equa­

tions in unknown voltages, v^, v^, ... v^ and unknown currents, 

i , i ... i . and are called the hybrid equations of the non-
m^+l m^+2' m^+nig 

linear resistive network N. Once these unknowns are solved, the 

corresponding solution for the elements inside N can be easily determined 

by topological relations of the circuit. 
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VII. ILLUSTRATIVE EXAMPLES 

A. Example 1 [15] 

Consider the nonlinear circuit of Figure 8a, consisting of a battery 

E = 1.2 V in series with a linear resistor R = 1.5 and a tunnel diode. 

In order to find the operating points of this network analytically, the 

characteristics of the tunnel diode have been approximated by the 

following polynomial [30]. 

i = g(v) = 17.76V - 103. 79v^ + 229.62v^ - 226.31?^ + 83.72 v^ mA 

(7-1) 

The v-i characteristic of the tunnel diode is shown in Figure 9. In 

order to find the dc solutions of this circuit by the piecewise cubic 

spline method, the fifth degree polynomial has to be interpolated by 

piecewise cubic spline functions. Following the procedures outlined in 

section A, Chapter VI, the first step is to select the initial knots. 

This function is a fifth degree polynomial and its curve has one relative 

maximum and one relative minimum. Together with two end points six ini­

tial knots are selected in order to take care of the flat part of the 

curve. They are 0.0000, 0.1380, 0.5000, 0.6601, 0.8500 and 1.0000 volts. 

After using the variable knot computer subroutine ICSVKU [29] which is 

briefly explained in Appendix B, the optimal knots for minimum least 

squares error for five piecewise cubic spline functions are 0.0000, 0.1711, 

0.4075, 0.4919, 0.7796, and 1.0000 volts. With these optimal knots, the 

Y vector, which represents the constant term C. , (i = 1, ... 5), and 
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R = 1.5 kQ 

E 

Figure 8a. Single tunnel-diode circuit 

N R = 1.5 kn 

-vw^ -o— 

E 1.2 V v  i 

Figure 8b. Extraction of the nonlinear resistor of network N 
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Figure 9. v-i characteristics for tunnel diode 
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the matrix C for coefficients C. , (i = 1, ... 5, j = 2 ... 4) of cubic 

spline functions are as follows: 

/ 

0.0004074 

0.9655 

0.2090 

0.1106 

0.08211 

'i,l 

where C 
i,l 

1. 5 is the constant term for each spline function. 

C " Cij = 

17.47 

-1.734 

-2.101 

-0.6034 

0.2665 

-95.17 

-17.06 

15.50 

2.237 

0.7874 

152.2 

45.92 

-52.37 

-1.679 

75.90 

where i » 1, ... 5, j = 2, 

functions. 

4 are the coefficients for spline 

The plecewlse cubic spline functions for each interval are; 

0.0004074 + 17.47 v - 95.17 + 152.2 

(between knots 0.00 and 0.1711) 

0.9655 - 1.734 (v - 0.1711) - 17.06 (v - 0.1711)' 

+ 45.92 (v - 0.1711) 

(between knots 0.1711 and 0.4075) 

0.2090 - 2.101 (v - 0.4075) + 15.5 (v - 0.4075)^ 

- 52.37 (v - 0.4075)' 

(between knots 0.4075 and 0.4919) 
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S, 0.1106 - 0.6034 (v - 0.4919) + 2.237 (v - 0.4919)^ 
4 

- 1.679 (v - 0.4919)3 

(between knots 0.4919 and 0.7796) 

S 0.08211 + 0.2665 (v - 0.7996) + 0.7874 (v - 0.7796)^ 

+ 75.9 (v - 0.7796)3 

(between knots 0.7796 and 1.000) 

All the spline functions have continuous first and second derivatives 

at the knots. 

For the simple circuit of Figure 8a, the following equations can be 

obtained by inspection. 

Equation from law of interconnection (Kirchhoff's Laws): 

f(Vyi) =  v  +  R i - E  =  0  ( 7 - 2 )  

Equation from law of element: 

g(v) = 17.76 V - 103.79 v^ + 229.62 v^ - 226.31 v^ 

+ 83.72 v^ mA (7-3) 

The network of Figure 8a is redrawn as shown in Figure 8b in the 

form of a one-port linear network terminated by the iterative spline 

equivalent circuits associated with the nonlinear resistor. (i = 1, 

... 5) is the iterative piecewise cubic spline. For each the nonlinear 

spline equivalent circuit equations with initial values chosen for 

example, at the midpoint of the interval, are solved. The validity of 

each solution is checked by comparing with the interval limits. If it 

falls outside the interval limits, it is a false solution, otherwise it 
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is a true solution. By applying the subroutine ZSYSTM [29] the three 

valid solutions (operating points) are found to be (0.0626 V, 

0.7584 mA), (0.2875 V, 0.6046 mA), (0.8857 V, 0.2095 mA). Subroutine 

ZSYSTM is briefly explained in Appendix C. In this example is obtained 

with 3 iterations and and each with 1 iteration. and are 

the equilibrium states of this bistable circuit. and are stable 

and Qg is unstable; The complete computer program is listed in Appendix 

D. 

If we apply the subroutine ZSYSTM and solve directly the system of 

equations with the original fifth degree polynomial for the tunnel diode 

and five initial conditions selected as in the plecewlse-cubic case, we 

obtain the following five solutions: (0.0622 V, 0.7584 mA), Qg 

(0.0621 V, 0.7585 mA), (0.0082 V, 0.7945 mA), (0.1865 V, 0.6756 mA), 

Qj. (0.2875 V, 0.6082 mA). By comparing these solutions with those obtained 

by plecewlse-cubic spline techniques only solutions and are the 

true solutions and the other true solution is missing though the same 

Initial conditions were used. 

B. Example 2 

Consider the same nonlinear circuit of Figure 8a. If the value of 

the independent voltage source E is changed while the value of the series 

resistor R is fixed, à family of loadlines with the same slope is obtained 

as shown in Figure 10. The Intersections of those loadlines with the 

tunnel diode characteristics curve are the operating points at that par­

ticular bias condition. The locus of operating points is obtained with 

the help of the conqiuter and is tabulated as shown in Table 1. In the 
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V (volts) 

Figure 10. A family of leadlines superimposed upon the tunnel diode v-i curve 
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Table 1. The locus of operating points for Example 2 

Value Coordinates of operating points (milllamperes) 
of E 

[volts) Vll ^12 ^3 \4 ^15 ^11 ^12 ^13 ^14 :i5 

0.1 0.0037 _ 0.0641 
0.2 0.0076 - - - - 0.1282 - - — 

0.3 0.0117 - - - - 0.1921 — — __ 
0.4 0.0159 - - - - 0.2560 - -

0.5 0.0204 - - - - 0.3196 - — — — 

0.6 0.0252 - - - - 0.3831 — — — 

0.64 0.0272 - - - — 0.4085 — — 

0.65 0.0277 - - - - 0.4148 — — __ 
0.66 0.0282 - 0.4622 - - 0.4211 - 0.1318 _ 

0.7 0.0302 - 0.4185 - - 0.4464 — 0.1876 __ 
0.8 0.0356 0.3788 - - - 0.5095 0.2807 — — — 

0.9 0.0414 0.3520 - 0.7775 - 0.5723 0.3653 - 0.0816 — 

1.0 0.0478 0.3289 - - 0.8337 0.6347 0.4473 — 0.1108 
1.1 0.0547 0.3074 - - 0.8645 0.6968 0.5283 - — 0.1569 
1.2 0.0625 0.2864 - - 0.8855 0.7582 0.6090 - — 0.2096 
1.3 0.0715 0.2650 - - 0.9019 0.8189 0.6899 - - 0.2653 
1.4 0.0823 0.2424 - - 0.9155 0.8784 0.7117 - — 0.3229 
1.5 0.0962 0.2168 - - 0.9276 0.9358 0.8544 - — 0.3816 
1.6 0.1168 0.1845 - - 0.9387 0.9887 0.9436 - — 0.4408 
1.601 0.1222 - - - 0.9383 0.9918 - - — 0.4477 
1.604 0.1444 - - - 0.9411 0.9970 - - - 0.4658 
1.605 - - - - 0.9421 - - - - 0.4719 
1.606 - - - - 0.9430 - - - - 0.4779 
1.7 - - - - 0.9494 - - - - 0.5003 
1.8 - - - - 0.9597 - - - — 0.5601 
1.9 - - - - 0.9699 - - - - 0.6200 
2.0 - - - - 0.9800 - - - - 0.6799 
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table V^. and represent the voltage and current of the ith nonlinear 

element jth spline segment respectively. For example and repre­

sent the voltage and current of the first nonlinear element and 4th spline 

segment respectively. By changing the value of independent voltage from 

0-1 V to 2.0 V each spline segment has at least one operating point, and 

the maximum number of operating points is three as is shown in Table 1. 

When the value of E is between 0.7 V and 1.604 V it provides bistable 

conditions. When E exceeds 1.604 V, switching occurs as is indicated by 

the dashed line in Figure 9. By changing the bias voltage in this 

simple circuit, it senses the threshold level for a switching [26, 27]. 

This circuit can be used as a tunnel diode switching circuit and has 

threshold-sensing property. Because of this property it is useful in 

nuclear instrumentation where the energy of particles under study is 

related to the amplitude of the pulses they produce. 

C. Example 3 

Consider the nonlinear circuit of Figure 11a, consisting of a battery 

E = 2.0 V in series with a linear resistor R = 5 kO and two tunnel diodes. 

The characteristics of the two tunnel diodes are the same as was used in 

Example 1. In this circuit we have two nonlinear elements. By applying 

the spline function technique as described in Example 1, each nonlinear 

element can be approximated by 5 piecewise-cubic spline functions. The 

iterative equivalent circuit is shown in Figure lib. 

The circuit equations are: 

Equations from law of elements: 
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R = 5 kfi 

V\AA— 

E = 2.0 V 

+ 

Figure 11a. Two-tunnel-diode circuit 

VV\A 
R = 5 kfl 

^1 

E = 2.0 V ^ 

v„ 

Figure lib. Iterative equivalent circuit 
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i - = 0 (7-4) 

i - ggCVg) = 0 (7-5) 

Equation from law of interconnection: 

+ V2 + 51 - 2 = 0 (7-6) 

To solve the system of simultaneous nonlinear equations, gj^('Vj^) and 

®2^^2^ must be substituted by their iterative equivalent piecewise spline 

functions. There are a total of 25 (5x5) spline segment combinations. 

With each segment combination the circuit can be solved easily by any 

Newton-like iterative method, since all the equations are in lower degree 

and there are no initial value and singularity problems. After the solu­

tion is obtained, its validity is checked by comparing it with the inter­

val limits. By applying the subroutine ZSYSTM there are 9 true solutions 

and 16 false solutions. The maximum number of iterations for all the 

solutions is 6. The 9 true solutions together with their segment combina­

tions are shown in Table 2. The characteristics of two series tunnel-diode 

and the loadllne is shown in Figure 12. If the value of the independent 

voltage source E and the series resistor R are properly selected, different 

operating points are obtained as shown in Table 2. With E = 1.2 V and R = 

1.5 kH, there are only 7 true solutions, the other 18 are false solutions. 

With E = 1.2 V and R = 2 kfl only 6 true solutions are obtained. 

D. Example 4 

In the previous examples the nonlinear elements are characterized by 
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Table 2. The locus of operating points for twln-tunnel-diode circuit 

Spline 

'l'itî)" """cwf C.::SL. ^ '2 

11 0.0257 0.0257 0.3897 
12 0.0207 0.3649 0.3228 
15 0.0135 0.8888 0.2195 
21 0.3649 0.0207 0.3228 
22 0.3928 0.3928 0.2428 
35 0.4555 0.8542 0.1380 
51 0.8888 0.0134 0.2195 
53 0.8542 0.4555 0.1380 
55 0.7885 0.7885 0.0845 

11 0.0579 0.0579 0.7227 
12 0.0417 0.2951 0.5753 
15 0.0124 0.8833 0.2028 
21 0.2951 0.0417 0.5753 
22 0.3702 0.3702 0.3063 
44 0.5328 0.5328 0.8952 
51 0.8833 0.0124 0.2028 

11 0.0402 0.0402 0.5597 
12 0.0279 0.3371 0.4174 
15 0.0097 0.8668 0.1617 
21 0.3371 0.0279 0.4174 
33 0.4279 0.4279 0.1720 

51 0.8668 0.0097 0.1617 
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Vi + Vg (V) 

Figure 12. The characteristics of two series tunnel-diode and the leadline 
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simple unicursal curves. If the nonlinear element is characterized by 

unicursal curves with self-intersections, the piecewise spline function 

technique is the only existing practical method which can be used to 

solve the problem and obtain the multiple solutions. 

Consider the same nonlinear circuit of Figure 8a. With E = 18 V and 

R = 2 kfi the v-i characteristic of the nonlinear element is as shown in 

Figure 13, which is of course pathological. For approximation by piece-

wise cubic spline functions, the whole curve is divided into three sec­

tions, l~i, and Fs. Their intervals are Fl [(0.00, 0.00), (14.6, 7.7)], 

1% [(5.2, 14.6), (3.0, 7.7)] and ïs [(5.3, 18.0), (3.0, 5.3)]. The choice 

of dividing boundaries requires each of the fi" (i = 1, 2, 3) to be a func­

tional curve, so that the computer subroutine to obtain the piecewise 

spline functions can be applied directly. For fl 16 points are selected 

along the curve for approximation, {T 11 points, and (T 13 points. After 

using the subroutine ICSVKU for each Fi (i = 1, 2, 3) the computed results 

are as follows: 

n 

Y = 

0.0901 

7.5790 

9.0280 

where Y. = C. ^ is the constant term of spline functions and 
1 1.1 

C = 

1.9660 

0.6213 

-0.5823 

-0.1913 

-0.00126 

-0.1793 

0.00907 

-0.00890 

0.00138 

The optimal knots are (0.000, 6.983, 13.65, 14.60) and the piecewise 
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spline functions are: 

0.09015 + 1.966 v - 0.1913 + 0.00907 

S_ 7.579 + 0.6213 (v - 6.983) - 0.00126 (v - 6.983)' 

- 0.0089 (v - 6.983)3 

9.028 - 0.5823 (v - 13.65) - 0.1793 (v - 13.65) 

+ 0.001387 (v - 13.65)' 

Y = 

3.001 

2.006 

5.910 

and 

C = 

-1.9740 

0.07102 

1.2670 

1.2570 

0.02894 

0.1365 

-0.2575 

0.004954 

5.3100 

The optimal knots are (5.20, 6.79, 14.02, 14.60) and the spline func­

tions are: 

3.001 - 1.974 (v - 5.20) + 1.257 (v - 5.20)' 

- 0.2575 (v - 5.20) 

S 2.006 + 0.07102 (v - 6.79) + 0.02894 (v - 6.79) 

+ 0.004954 (v - 6.79) 
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S. 5.91 + 1.267 (v - 14.02) + 0.1365 (v - 14.02)' 

+ 5.31 (v - 14.02) 

17 

Y = 

3.1830 

4.6790 

2.8000 

and 

C = 

1.4000 

-1.4040 

-1.5240 

-0.9309 

-0.5087 

0.4040 

-0.02973 

0.2653 

-0.01998 

The optimal knots are (5.20, 9.86, 11.01, 18.00) and the piecewise 

spline functions are: 

3.183 + 1.4 (v - 5.20) - 0.09309 (v - 5.20)' 

- 0.02973 Cv - 5.20) 

S 4.679 - 1.404 (v - 9.86) - 0.5087 (v - 9.86)' 

+ 0.2653 (v - 9.86) 

S 2.8 - 1.524 (v - 11.01) + 0.4041 (v - 11.01)' 

- 0.01998 (v - 11.01)" 

The circuit equations are: 

f ( v , i )  = v + R i - E = 0  

i - S(v) = 0 

After applying the subroutine ZSYSTM to solve the nonlinear equations. 
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5 true solutions are found. These 5 operating points are the intersec­

tions of the v-i characteristics and the load line as shown in Figure 13. 

Their coordinates are: 

(5.1867 V, 6.4066 mA), 

(10.411 V, 3.7941 mA), 

(14.6781 V, 1.6609 mA). 

Q (7.2233 V, 5.3883 mA) 

(11.282 V, 3.3585 mA) 

E. Example 5 

Consider the more general nonlinear resistor network consisting of an 

independent voltage source E, linear resistors, a voltage-controlled 

resistor R^, a current-controlled resistor and a current-controlled vol­

tage source as shown in Figure 14. R^ is a tunnel diode and its v-i char­

acteristics are the same as the one used in Example 1 and R^ is an uni-

cursal element whose v-i characteristics are the same as the one used in 

Example 4 except that the roles of v and i are interchanged. In other 

words Rg is now a current-controlled nonlinear resistor. If we extract 

two nonlinear resistors R^^ and R^ as shown in Figure 14, then we can apply 

the procedure described in section B, Chapter VI for hybrid nonlinear 

network analysis. The hybrid representation of this circuit is 

/ \ 

i Bll Hl2 

^21 **22 

f ^ 

A 

^ 4 

(7-7) 

For this circuit each element of H can be found [31] by first setting 

all independent sources inside N to zero, so that ^ = M ̂  = 0, and then 

obtaining h., by the ratio 
J K 
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V (volts) 

Figure 13. v-i characteristics of the unicursal element 
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E 

Figure 14. Circuit for Example 5 
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g _ response at port j 
jk excitation at port k 

(7-8) 

and Sg can be found as follows: 

Si -il 

Sj = Vj 

Vi = 0, i2 = 0 

^1 = 0, ig = 0 

(7-9) 

After some algebraic manipulations the resulting hybrid equations are 

found to be: 

J / 

h 

v„ 
2 

3 3 

10 10 

9 3 
10 5 

1 
/ 1 / \ 

^1 
+ 

0.36 

4 
1.08 

where i^, and i^, are the voltage and current of the voltage and 

current port respectively. And 

'2 " 

are the voltage-controlled and current-controlled resistor respectively. 

Since there is no general method to determine the number of solutions 

of the nonlinear network with multiple solutions, several values of E are 

tried. With the help of computer subroutine ZSYSTM, when E = 1.2 V or 

0.5 V there is only one true solution. When E = 10 V or 30 V no true 

solution is obtained. The dc solutions (operating points) are: 
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N 

2i 
1\—. 

2 

VW^ 

3 Q. 

1 Q 

WV^ 

Figure 15. Circuit for Example 5. ' Nonlinear resistors are extracted 
and shown across 2 ports of a linear 2-port 
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Ql(Vi = 0.0319 V, = 0.4661 mA, = 0.8198 V, = 0.3855 mA) 

when E = 1.2 V 

Q (v = 0.0114 V, = 0.1878 mA, = 0.3571 V, = 0.1376 mA) 

when E = 0.5 V 

F. Example 6 [30] 

Tunnel diodes can be used in the flip-flop circuit. Figure 16a is a 

two-tunnel-diode circuit. It consists of two tunnel diodes connected in 

series, three resistors, and an inductor. The two tunnel diodes are 

assumed to be identical and their v-i characteristics are the same as the 

one used in Example 1. The principle of operation is as follows; the dc 

supply is of such a magnitude that only one of the two diodes can be in 

the high-voltage, low-current state; the other diode has to be in the 

low-voltage, high-current state. 

To design this flip-flop circuit, the first step is to determine the 

proper values of R^, R, and E so that TDl is biased at point b and TD2 is 

biased at point a as is shown in Figure 16b. The second step is to find 

the operating points. In the steady state the circuit is a nonlinear dc 

resistor circuit, so the spline function technique can be applied to 

obtain the multiple solutions. 

Referring to Figure 16b, the supply voltage E has to be at least 

large enough to let one of the diodes pass its peak current point but not 

large enough either to support both diodes at the valley point (V^, I^), 

or one diode at the valley point (V^, I^) and one diode at peak point 

(V , I ). Thus 
P P 
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INPUT o-

TDl 

•o OUTPUT 

TD2 

Figure 16a. A two-tunnel-diode flip-flop circuit 

I 
P 

I 
a 

J _ I. 
b 

I 
v 

V V 
a 1 

V V, 
b v 

Figure 16b. Steady state conditions 
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< E < 2 Vv + (:v + *b 

or 

V 

V + V + I I + 
V p p R *b 

whichever is smaller. 

The following two loop equations also have to be satisfied. 

"a - lb)* = \ 

P 

(7-10) 

E = 

After algebraic manipulations a suitable set of values for R, R^ and 

E are: 

R = 0.6056 kSÎ 

R^ = 7.4933 kO 

E = 10 V 

llie operating points are obtained with the help of computer by-

using subroutine ZSYSTM. They are: 

V = 

I = 

V, = 

I, = 

0.1356 V 

0.9989 mA 

0.70018 V 

0.0667 mA 
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G. Example 7 

In Example 1 the v-i characteristics of a tunnel diode were approxi­

mated by five piecewise-cubic segments. This example investigates the 

effects of varying the number of segments. In particular, a three segment 

approximation with knots (0.0000 V, —0.0579 mA.), (0.13808 V, 0.9300 mÀ), 

(0.66014 V, -0.0029 mA) and (1.0000 V, 0.8387 mA) as is shown in Figure 17 

and a seven segment approximation with knots (0.0000 V, -2.491 x 10 

(0.09411 V, 0.9275 mA), (0.1508 V, 0.9949 mA), (0.2145 V, 0.8594 mA), 

(0.3742 V, 0.3094 mA), (0.6220 V, 0.07052 mA), (0.7969 V, 0.08667 mA) and 

(1.0000 V, 1.0000 mA) are used. The Y vector and spline coefficient matrix 

for the three segment approximation are 

^ -0.05799 

0.93000 

-0.00293 

24.920 -191.80 457.300 

-1.888 -2.35 4.873 

-0.3581 5.281 9.002 

and for the seven segment approximation are 

-2.491 X 10 
0.9275 
0.9949 
0.8594 
0.3094 
0.07052 
0.08667 

-7 
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17.660 -99.84 177.9 

3.5700 -49.45 129.8 

-0.7666 -27.51 97.69 

-3.0840 -8.828 41,17 

-2.7540 10.90 -14.83 

-0.08512 -0.1286 6.535 

0.4696 3,3000 80.66 

Table 3 gives the solutions obtained for the circuit of Example 1 

with these approximations and for comparison those obtained with the five 

piecewise-cubic segment approximation and the original fifth degree poly­

nomial [15]. Comparing these results, it is seen that there is substan­

tial loss in accuracy in going from the five segment approximation to the 

three segment approximation. While the results of the three segment 

approximation may be sufficiently accurate for some engineering applica­

tions, they are not generally acceptable. The results of the five segment 

approximation are generally acceptable for engineering applications. 

These conclusions are reinforced by Figures 17 and 18. Figure 17 

compares the three segment piecewise-cubic approximation with the original 

v-i characteristics and shows that there are substantial differences. 

Figure 18 shows that the five segment piecewise-cubic approximation and 

the original v-i characteristic are almost coincident. This indicates 

that little improvement would be obtained in going to a seven segment 

approximation. This conjecture is confirmed by the results obtained with 

the seven segment approximation as shown in Table 3. 
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Table 3. Comparison of various approximations 

Fifth degree 3 segment 5 segment 7 segment 
polynomial piecewise-cubic piecewise-cubic plecewise-cubic 

Q1 0.06263 V 0.0501 V 0.0625 V 0.06265 V 
0.75824 mA 0.7666 mA 0.7582 mA 0.75823 mA 

Q2 0.28537 V 0.2898 V 0.2864 V 0.28585 V 
0.60975 mA 0.6067 mA 0.6090 mA 0.60943 mA 

Q3 0.88443 V 
0.21038 mA 

0.8650 V 
0.2233 mA 

0.8855 V 

0.2096 mA 

0.88515 V 

0.2099 mA 
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Three segment piecewise-cubic approximation 

Original 

0.9 

0 . 8  

(0 
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Figure 17. Three segment piecwise-cubic approximation 
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Dotted line: Five segment piecewise-cubic approximation 

Original curve 
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Figure 18. Five segment piecewise-cubic approximation 
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H. Example 8 

This example compares the results obtained with the piecewise-cubic 

spline technique to those obtained with piecewise-linear methods. The 

circuit of Example 1 is again used and the v—i characteristics of the 

tunnel diode are first approximated by five piecewise-linear segments and 

then by ten piecewise-linear segments as shown in Figure 19 and Figure 20 

respectively. The equations for all the segments are given in Table 4. 

The solutions are obtained by solving the simiultaneous linear equations. 

They are listed in Table 5 for both the five and ten segment approxima­

tions. In Table 5 the actual solutions and the solutions obtained by the 

piecewise-cubic spline technique with five segments are also listed for 

the purpose of comparison. In all the cases the solutions are obtained 

with three different applied voltages. The criteria used in comparison 

is the distance measured between the true solution point and the solution 

points obtained by the various approximation methods. A smaller distance 

implies smaller error. 

From the table it is observed that, out of nine solutions, only one 

error by the five-segment piecewise-linear method is less than those by 

the piecewise-cubic method. Similarly, a comparison of the five-segment 

cubic approximation with the ten-segment piecewise-linear approximation 

shows that the former gives more accurate solutions at six of nine points. 

This comparison indicates that with nonlinear resistive networks 

having a negative slope region, the piecewise-cubic technique can be used 

with fewer segments than the piecewise-linear method and still obtain 

acceptable accuracy. If there are two nonlinear elements in the circuit 

as used in Example 3, for a five segment piecewise-cubic approximation 
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there are 20 coefficients, 5 intervals, 6 knots and 25 segment combinations, 

but for a ten segment piecewise-linear approximation there are 20 coeffi­

cients, 10 intervals, 11 knots and 100 segnent combinations. Therefore, a 

great amount of computer storage and time may be saved by using piecewise-

cubic spline techniques for analysis of large scale nonlinear networks. 
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Table 4. Equations for five segment and 10 
segment piecewise-linear approximations 

5 segment ; 

1. i = 7.1407 V 0<v£0.14 

2. i = -2.8916 V t 1.4045 0.14 < v < 0.38 

3. i -0.8632 V + 0.6336 0.38 < V ̂  0.1 

4. i 0.7861 V - 0.4465 0.655 < V < 0 

5. i 7.391 V - 6.391 0.9 < V < 1.0 

10 segments: 

1. i 9.459 V 0.0 < V < 0.1 

2. i -0.439 V + 0.9898 0.1 < V £ 0.2 
3. i 

= 
-3.451 V + 1.5922 0.2 £ V £ 0.3 

4. i - -2.999 V + 1.4566 0.3 < V < 0.4 

5. i 
= 
-1.5 V + 0.8568 0.4 < V < 0.5 

6. i 
= 
-0.37 V + 0.2918 0.5 < V < 0.6 

7. i 
= 
-0.0146 V + 0.07856 0.6 < V < 0.7 

8. i 
= 
0.1629 V - 0.0456 0.7 < V < 0.8 

9. i 
= 
1.7627 V - 1.3255 0.8 < V < 0.9 

10. i 
= 

7.391 V - 6.391 0.9 < V < 1.0 
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Table 5. Error comparison for various approximations 

E(volts) ACTUAL PWC PWL PWL 
SOLUTIONS SOLUTION ERROR 5 SEG. ERROR 10 SEG ERROR 

Q1 0.04135 0.0414 0.000139 0.0768 0.04265 0.0592 0.0218 

0.57243 0.5723 0.5487 0.5599 

0.9 Q2 0.36030 0.3520 0.00995 0.3615 0.00138* 0.3672 0.00823* 
0.35980 0.3653 0.3591 0.3553 

Q3 0.78376 0.7775 0.00748 0.7203 0.07621 0.7783 0.0065* 
0.07749 0.0816 0.1197 0.0811 

Q1 0.06263 0.0625 0.000136 0.1024 0.04792 0.0790 0.0197 
0.75824 0.7582 0.7315 0.7472 

1.2 Q2 0.28537 0.2864 0.00127 0.2716 0.0166 0.2846 0.000809* 
0.60975 0.6090 0.6191 0.6100 

Q3 0.88443 0.8855 0.00132 0.8580 0,0317 0.8749 0.01138 
0.21038 0.2096 0.2379 0.2166 

Q1 0.09675 0.0962 0.00062 0.1280 0.03765 0.0987 0.00240 
0.93550 0.9358 0.9145 0.9341 

1.5 q2 0.21540 0.2168 0.00244 0.1817 0.0405 0.2127 0.00319 
0.85640 0.8544 0.8790 0.8581 

Q3 0.92725 0.9276 0.000418 0.9172 0.01179 0.9172 0.01179 
0.38183 0.3816 0.3880 0.3800 

Indicates the error is less than piecewise-cubic method 
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Figure 19. Five segment piecewise-linear approximation 
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Figure 20. Ten segment plecewise-linear approximation 
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VIII. SUMMARY AND SUGGESTED CONSIDERATION 

Spline functions are well-developed in the literature and have been 

used by engineers in the fields of control theory, system modeling and 

identification, communication and digital filtering [20] because of their 

existence and uniqueness, minimum norm and good approximation properties 

[18]. 

The method of using plecewise-cubic spline approximations is superior 

to other techniques when the nonlinear element itself has one or more 

regions of short radii of curvature in its v-1 curve. Spline functions 

allow the condition of continuous first and/or second derivatives at the 

knots, or junctions of succeeding spline segments. In contrast, plecewise-

llnear models are superior \^en the v-i curves have sections meeting 

"nearly at a point", as, for example, when saturation exists. Specific 

cases in which the plecewise-cubic spline technique is advantageous are 

described in the following paragraphs. 

Plecewise-cubic spline approximation should be applied when the v-1 

characteristics of the nonlinear elements are represented by high degree 

polynomials or analytic functions, like the one used in the tunnel diode 

circuit of Example 1. The number of knots to be used and their initial 

locations depend on the shape of the v-i curve. As a guideline and the 

starting point, the number of knots can be taken as twice the number of 

relative maximum and minimum points. For approximating a highly non­

linear v-1 cuirve with very few knots the fixed knots algorithm should be 

used in order to avoid sharp bend in the sublnterval and miss some of 

the solutions. Some knot locations be selected near the relative maximum 
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and minimum points. 

Piecewise-cubic approximation should be applied vhen the v-i character­

istics are represented by smooth experimental, curve with high non-linearity, 

like the one used in Example 4. Since many of the v-i characteristics of 

the electronic devices are represented by experimental curves, this tech­

nique is suitable for this purpose. 

In analyzing large scale nonlinear networks by computer, it is a common 

practice to reduce the number of variables by combining nonlinear elements 

in the network in order to perform the analysis. In the process of com­

bining nonlinear elements together, v-i characteristics with high non-

linearity may appear. In this case the piecewise-cubic spline technique 

should be applied. The circuit used in Example 3 demonstrates this process 

when two tunnel diodes are connected in series. When they are combined 

together a smooth highly nonlinear v-i curve appear as is shown in Figure 

12. In the analysis of large scale electronic circuit this situation often 

happens. 

Nonlinear solid state devices such as diode and transistors can be 

modeled by spline functions [20]. To analyze the networks consisting of 

these devices the piecewise spline technique can easily be applied. The 

tunnel diode circuit of Example 1 is used in digital computer and control 

areas where extremely fast logic gates, registers and memories are needed. 

The tunnel diode flip-flop circuit used in Example 6 is a basic computer 

logic circuit. The tunnel diode detector circuit of the fire-warning and 

fire-extinguishing actuator for an aircraft jet engine is another important 

application [2]. Other areas where tunnel diodes are used are electronic 
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amplifier and oscillator circuits and the controlled-negatlve resistive 

device. If a large number of tunnel diode are used they can even provide 

step approximations of desired graphical function [27]. 

In the transmission of data over a communication channel, the piece-

spline technique can be used for data compression. Such data compression 

schemes can be employed in the compression of speech signals, picture func­

tions [20] and electroencephalogram (EEC) signals. Cubic splines can also 

be used in the design of digital filters [20]. 

In Example 7, the approximation property and the significance of 

piecewise-cubic spline approximants is demonstrated. Five piecewlse-cubic 

segments are needed to accurately approximate the fifth degree polynomial. 

Comparison of the solutions obtained for the circuit of Example 1 by three 

segment, five segment and seven segment piecewise-cubic approximations shows 

that the solutions with the five segment approximation are generally accep­

table for engineering applications. 

In Example 8 a comparison is made between piecewlse-cubic spline and 

piecewise-linear techniques in analyzing the nonlinear resistive networks. 

It is shown that the piecewise-cubic spline technique with five segment 

approximation is more accurate than the piecewise-linear method with ten 

segment approximation. For two nonlinear resistors as were used in Example 

3 the ratio of segment combinations are 4:1 ((100/25)2). In general, for 

analyzing a large scale nonlinear resistive networks with n identical ele­

ments which are characterized by highly nonlinear smooth curves the ratio 

of segment combinations would be where and denote the required 

number of piecewise-linear segments and piecewise-cubic segments respec­

tively for approximating the v-1 curve. If N^/N^ is greater than two a 
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great amount of computer storage and time may be saved. 

As for approximating functions of several variables there is still no 

computationally efficient techniques available [32, 33]. The future hopes 

rest on the more efficient n-dimensional generalization of the promising 

spline function approach [33]. It is hoped that this study will be a 

stepping stone to apply spline function techniques in analyzing nonlinear 

electronic network problems. 

For a given nonlinear resistive network with multiple solutions, 

determination of the number of solutions which the network has is still an 

open and difficult problem because different bias conditions in the circuit 

result in different number of solutions. Chien [34] investigated this 

problem by establishing conditions that a bounded set contains an operating 

point. The conditions show that close relations exist between eventual 

passivity and the existence of an operating point in a bounded set. But 

his method for determining the existence of an operating point is limited 

to nonlinear resistors with very simple v-i curves. Moreover he still has 

to apply the piecewise-linear method to compute the operating point. 

Therefore more work is needed to develop a general practical theory to 

estimate the number of true solutions before actually computing the solu­

tions in order to save computer time. This work has shown that piecewise-

cubic approximants can be used to find, in an efficient manner, the actual 

solutions when multiple solutions are present. A combination of knowledge 

of the number of solution and cubic approximants would give the circuit 

designer a powerful technique for the analysis of large scale electronic 

circuits. 
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XI. APPENDIX A; SUBROUTINE ICSFKU 

This subroutine [29] computes a least square approximation to a given 

set of points using cubic splines with a given set of knots. The suc­

cessful use of splines for purposes of providing a smooth approximation 

to a given set of points depends strongly on the proper placement of 

knots. 

ICSFKU is intended to be used for functions that can be approximated 

adequately with relatively few knots. It has a built-in limit of 28 

knots. 

If thé knots are ordered, then interval I has endpoints XK(I) and 

XK(I + 1). The cubic spline function is given by 

S(T).= ((C(I, 3)*D + C(I, 2)) * D + C(I, 1)) * D + Y(I) 

where T is in interval I and D = T - XK (I). 

The spline coefficients are always computed as if the knots are 

ordered, and ordering the knots is advised for ease of output usage. 

The cubic spline computed by ICSFKU is continuous and has continuous 

first and second derivatives. 

The error which ICSFKU minimize is defined as follows; 

ERROR = 

/M 

Z R. W. where 
i=i ^ i 

R^ = F^ - S(X^) 1=1, \ 

Wi . (Xg - - %i) 

^i " ̂ \+l • ̂i-l^'^^^x • V i = 2, Nx-1 
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V - ('S.K -

(Xi» F^) i = 1, —, Nx is the given set of points and S is the 

least squares cubic spline approximation to that set of points. 
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XII. APPENDIX B: SUBROUTINE ICSVKU 

This subroutine [29l computes a least squares approximation to a given 

set of points by cubic splines with a given number of knots. The suc­

cessful use of splines for purposes of providing a smooth approximation 

to a given set of points depends strongly on the proper placement of 

knots. ICSVKU starts with a given set of knots and varies them one by 

one in order to determine the knot locations that minimize the least 

squares error. 

ICSVKU uses the fixed knot subroutine ICSFKU in order to determine the 

optimal knot locations. Each knot is, in turn, varied so as to mini­

mize the least squares error as a function of this knot. This process 

is started with the right most interior knot and proceeds sequentially 

to the left. Iterations continue until a termination criterion is met. 

The cubic spline computed by ICSVKU is continuous and has continuous 

first and second derivatives. The number of knots must not be greater 

than 28. 
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XIII. APPENDIX C; SUBROUTINE ZSYSTM 

1. ZSYSTM [29] solves a system of N simultaneous nonlinear equations in 

N unknowns. 

2. This subroutine uses Brown's method [351 which is at least quadratically 

2 
convergent and requires only N /2 + 3N/2 function evaluations per iter-

2 
ative step as compared with N + N evaluations for Newton's method. A 

root is accepted if two successive approximations to a given root agree 

in the first NSIG digits. A root is also accepted if |F(X, K, PAR)| is 

less than EPS for every K = 1, N. 

3. ZSYSTM will terminate processing if a root is not found within ITMAX 

iterations and/or if the Jacobian matrix of the system of equations 

becomes computationally singular. In this case, a different initial 

approximation should be tried and/or the equations should be studied 

to see if some of the equations or variables can be eliminated or 

solved for in terms of others. 
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XIV. APPENDIX D; COMPUTER PROGRAM LISTINGS 

All computer programs listed here were written to conform to IBM 

FORTRAN IV, level G language rules. All programs and subroutines were 

written in double precision arithmetic. 
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c 
c M A I N  P R O G R A M  
C  
C  
C  P U R P O S E :  
C  I N T E R P O L A T I O N  O F  F I F T H  O R D E R  T U N N E L  D I O D E  V - I  
C  C H A R A C T E R I S T I C S  B Y  S P L I N E  F U N C T I O N  
C  
C  M E T H O D :  
C  S U B R O U T I N E  I C S V K U  C O M P U T E S  L E A S T  S Q U A R E S  A P P R O X I M A T I O N  
C  T O  A  G I V E N  S E T  O F  P O I N T S  U S I N G  C U B I C  S P L I N E S  W I T H  A  G I V E N  
C  S E T  O F  K N O T S  
C  
C  

I M P L I C I T  R E A L » 8 ( A - H t O - 2 )  
D I M E N S I O N  X ( 2 2 ) « F ( 2 2 ) . X K ( 6 ) « Y ( 5 ) « C ( 5 * 3 >  * W K < 2 6 4 ) f F K ( 6 ) ,  

1 V I C ( 5 ) . C I C ( 5 )  Z j  
I C = 5  
N X K = 6  

C  
C  I N I T I A L  K N O T S  

X K ( 1 ) = 0 « 0  
X K ( 2 1 = 1 « 3 6 0 8 0 - 1  
X K ( 3 ) = 0 . 5 D 0  
X K ( 4 ) = 6 . 6 0 1 4 D - 1  
X K C 5 )  = 0 #  8 5 D 0  
X K ( 6 ) = 1 . 0 D 0  

C  
N X = 2 2  

C  R E A D  I N  T H E  S E L E C T E D  N X  P O I N T S  O F  X C I )  
R E A D  ( 5 * 2 0 0 )  ( X d l *  1 = 1  . N X )  

2 0 0  F O R M A T ( 6 D 1 0 * 4 )  
C  C A L C U L A T E  F ( I )  C O R R E S P O N D I N G  T O  X (  I  )  

D O  5  1 = 1  ,  N X  
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F (  ! } = ( < (  (  8 . 3 7 2 0 1  * X (  I  ) - 2 . 2 6 3 1 D 2 ) * X (  1 ) 4 ^ 2 . 2 9 6 2 D 2 ) * X (  I  )  
1 - 1 * 0 3 7 9 0 2 ) * X ( I ) + l * 7 7 6 0 1 ) * X C I )  

5  C O N T I N U E  
W R I T E  ( 6 , 1 5 0 )  ( X ( I  ) . F ( I ) , I  =  1 . 2 2 )  

1 5 0  F O R M A T  C O ' ,  2 0 2 0 * 8 )  
C  
c 

C A L L  I C S V K U ( X , F , N X , X K , N X K , Y , C * I C  « E R R O R , W K , 1 E R )  
C  P R I N T  O U T  T H E  C O N S T A N T  T E R M  O F  T H E  C O E F F I C I E N T  M A T R I X  C < I , J )  

W R I T E  ( 6 , 1 0 )  
1 0  F O R M A T C O '  , 1 0 X , ' Y '  )  

W R I T E  ( 6 , 3 0 )  ( Y ( I ) , 1 = 1 , 5 )  
3 0  F O R M A T ( * 0 * • 5 X , D 1 0 * 4 )  

C  P R I N T  O U T  T H E  C O E F F I C I E N T S  M A T R I X  C ( I , J )  E X C E P T  T H E  C O N S T A N T  

C  T E R M  
W R I T E ( 6 , 4 0 )  

4 0  F O R M A T ( * 0 ' . 4 0 X , ' C ' )  
W R I T E  ( 6 , 5 0 )  ( ( C ( I , J ) , J = 1 , 3 ) , 1 = 1 , 5 )  ^  

5 0  F O R M A T ! « O * . 3 X , 3 D 2 0 * 4 )  
C  P R I N T  O U T  T H E  O P T I M A L  K N O T S  C A L C U L A T E D  

W R 1 T E < 6 . 7 0 )  X K  
7 0  F O R M A T ( « 0 * , 1 0 X , 6 D 1 5 « 4 )  

W R I T E ( 6 . 6 0 )  1 E R . E R R O R  
8 0  F O R M A T * ' O ' . I O X , 1 4 , 0 2 0 * 4 )  

C  C A L C U L A T E  T H E  C O R R E S P O N D I N G  F ( I )  F O R  O P T I M A L  K N O T S  
D O  1 0 0  1 = 1 , N X K  
F K ( I ) = ( ( < ( 8 * 3 7 2 0 1 * X K ( I ) - 2 . 2 6 3 1 D 2 > * X K ( I ) + 2 . 2 9 6 2 D 2 ) * X K ( I )  

1 - 1 • 0 3  7 9 D 2 ) « X K ( I ) + 1 * 7 7 6 D 1 ) * X K ( I )  
1 0 0  C O N T I N U E  

W R I T E  ( 6 , 1 1 0 )  ( F K ( I ) , 1 = 1 , N X K )  
1 1 0  F O R M A T ( *  0 ' , l O X , 6 D 1 5 * 4 )  

C  C A L C U L A T E  T H E  I N I T I A L  C O N D I T I O N S  F O R  E A C H  I N T E R V A L  
D O  1 2 0  1 = 1 , I C  
J = I  +  1  
V I C C l ) = ( X K ( I ) + X K ( J ) ) / 2 * 0 D 0  
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CIC(I)=(FK(I)+FK(J))/2.0DO 
120 CONTINUE 

W R I T E ( 6 . 1 3 0 )  ( V I C ( I ) «  1 = 1  * I C )  
1 3 0  F O R M A T ( ' 0 ' , 1 0 X , 5 D 1 5 . 4 )  

W R I T E ( 6 , 1 3 0 )  ( C I C d  )  t l = l  t l C )  
S T O P  
END 
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MAIN PRO«RAM 

PURPOSE: 
FINDING THE OPERATING POINTS AND THE THRESHOLD LEVEL FOR 

TUNNEL DIODE CIRCUIT 

METHOD: 
THE V-I CHARACTERISTICS OF THE NONLINEAR RESISTOR IS 

SUBSTITUTED BY ITS EAUIVALENT SPLINE SEGMENT. THE VALUE OF E 
IS CANGED FROM 0*0 TO 2.0 

USE SUBROUTINE ZSYSTM TO SOLVE THE SYSTEM OF NONLINEAR 
NETWORK EQUATIONS. THE FINAL VALID SOLUTIONS ARE OBTAINED 
BY VERIFICATION 

LISTING OF SIGNIFICANT VARIABLE NAMES 
XVL.XVH—LOWER AND UPPER LIMITS OF THE VOLTAGE IN EACH INTERVAL 
XIL.XÏH—LOWER AND UPPER LIMITS OF THE CURRENT IN EACH INTERVAL 

EXTERNAL AUX 
DIMENSION X<2),X1<5),X2(5),WA(12),IPAR(2) »XK(6).FK(6)•XVL(6) . 

T  X V H ( 6 ) » X I L ( 6 ) . X I H < 6 )  
DOUBLE PRECISION X.XI,X2.WA.EPS,E 
COMMON/EX/E 

READ IN INITIAL CONDITIONS 
READ(5*50) (XI(I), 1=1,5) 
F0RMAT(5D10.4) 
R E A D ( 5 . 5 0 )  ( X 2 ( I ) ,  1 = 1 , 5 )  

READ IN OPTIMAL KNOTS XK(I) 
R E A D  ( 5 , 7 0 )  ( X K (  I ) , 1 = 1 , 6 )  
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7 0  F O R M A T  ( 6 0 1 0 * 4 )  
R E A 0 ( 5 . 6 0 )  ( X I L ( I ) , 1 = 1 , 5 )  

g o  F O R M A T  ( 5 0 1 0 * 4 )  
R E A D * 5 , # 0 )  ( X I H ( I ) , 1 = 1 , 5 )  
D O  2 0 0  1 = 1 , 5  
X V L (  I  ) = X K ( I )  
J = I + 1  
X V H (  I  ) = X K ( J )  

2 0 0  C O N T I N U E  
E P S = 1 ® 0 D - 5  
N S I G = 4  
N = 2  
I T M A X = 3 0 0  
E = 0 . 0 0 0  
D O  2 0  J = l , 2 0  
E = E + 0 . 1 D 0  
D O  6 0  1 = 1 , 5  
I P A R ( 1 ) = I  
X ( 1 )  =  X 1 (  I  )  
X ( 2 ) = X 2 ( I )  
C A L L  Z S Y S T M  ( A U X , E P S , N S I « « N . X , I T M A X . W A , I  P A R , 1 E R )  

C  V E R I F Y  A N D  F I N D  O U T  T H E  T R U E  S O L U T I O N S  
I F ( X ( 1 )  . L T .  X V L ( I )  . O R .  X ( l )  . G T .  X V H ( I ) )  G O  T O  6 0  
I F ( X ( 2 )  . L T .  X I L ( I )  . O R .  X ( 2 )  . G T .  X I H ( I ) )  G O  T O  6 0  
I F ( X ( 1 )  . G T .  X V L ( I )  . A N D .  X ( l )  . L T .  X V H ( I ) )  G O  T O  9 0  
I F C X ( 2 )  . G T .  X I L ( I )  . A N D .  X ( 2 )  . L T .  X I H ( I ) )  G O  T O  9 0  

9 0  W R I T E  ( 6 , 1 0 0 0 )  I E R , I T M A X , I , X  
1 0 0 0  F O R M A T d H  ,  2 1 4 ,  1  O X ,  •  T S (  •  ,  1 3 ,  •  ) =  •  ,  2 D 2 0 . «  )  
6 0  C O N T I N U E  
2 0  C O N T I N U E  

S T O P  
E N D  
F U N C T I O N  A U X ( X , M , I P A R )  
D I M E N S I O N  X ( 1 ) , I P A R ( 2 )  
C O M M O N / E X / E  
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I N D I C A T E  5  S P L I N E  S E G M E N T S  
I N T E G E R  I I ( 5 ) / l . 2 » 3 . 4 . 5 /  
D O U B L E  P R E C I S I O N  A U X . X . E  
i = : P A R ( i )  
G O  T O  ( 1 , 2 ) , M  

1  N = I I ( I )  
G O  T O  4  

2  N = 6  
4  G O  T O  ( 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 ) , N  
1 1  A U X = X ( 2 ) - ( ( 1 « 5 2 2 0 2 » X ( 1 ) - 9 . 5 1 7 D l ) * X ( l ) + l « 7 4 7 D l ) * X ( 1 ) - 4 . 0 7 4 D - 4  

R E T U R N  
1 2  A U X = X ( 2 ) - ( ( 4 . 5 9 2 D l * ( X ( 1 ) - 1 . 7 1 1 D - 1 ) - 1 . 7 0 6 D l ) * ( X ( 1 ) - l «  7 1 1 0 - 1  )  

1 - 1 # 7 3 4 D 0 ) * ( X ( 1 ) - l , 7 1 1 D - l ) - 0 . 9 6 5 5 D O  
R E T U R N  

1 3  A U X = X ( 2 ) - ( ( - 5 . 2 3 7 D l * ( X ( l ) - 4 . 0 7 5 D - l ) + 1 . 5 5 D l ) * ( X ( l ) - 4 . 0 7 5 D - 1 )  
1 - 2 . 1 0 1 D O ) * ( X ( 1 ) - 4 . 0 7 5 D - l ) - 0 . 2 0 9 D 0  

R E T U R N  
1 4  A U X = X ( 2 ) - ( ( - 1 . 6 7 9 D 0 * ( X ( l ) - 0 . 4 9 1 9 D 0 ) + 2 . 2 3 7 D 0 ) * ( X ( l ) - 0 . 4 9 l 9 D O )  

1 - 0 , 6 0 3 4 D 0 ) * ( X ( 1 ) - 0 . 4 9 1 9 D 0 ) - 0 . 1 1 0 6 D 0  
R E T U R N  

1 5  A U X = X ( 2 ) - ( ( 7 . 5 9 D 1 * ( X ( 1 ) - 0 . 7 7 9 6 D 0 ) + 0 . 7 S 7 4 D 0 ) • ( X ( 1 ) - 0 . 7 7 9 6 0 0 )  
1  4 - 0 . 2 6 6 5 0 0 ) • (  X (  1  ) - 0 . 7 7 9 6 0 0  ) - 0 . 0 8 2 1 1  

R E T U R N  
1 6  A U X = X ( 1 ) + 1 . 5 D 0 * X ( 2 ) - E  

R E T U R N  
E N D  
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c M A I N  P R O G R A M  
C  
C  
C PURPOSE; 
c F I N D  T H E  O P E R A T I N G  P O I N T S  F O R  T H E  N O N L I N E A R  R E S I S T I V E  
C  N E T W O R K  W I R H  O N E  T U N N E L  D I O D E , O N E  U N I C U R S A L  E L E M E N T  W I T H  
C  S E L F - I N T E R S E C T I O N S , O N E  C U R R E N T - C O N T R O L L E D  V O L T A G E  
C  S O U R C E  A N D  T W O  L I N E A R  R E S I S T O R S  
C  
C  M E T H O D :  
C  A F T E R  F O R M U L A T I N G  H Y B R I D  E Q U A T I O N S  O F  T H E  N E T W O R K ,  U S E  
C  S U B R O U T I N E  Z S Y S T M  T O  O B T A I N  T H E  T R U E  S O L U T I O N S  
C  
C  L I S T I N G  T H E  S I G N I F I C A N T  V A R I A B L E  N A M E S  
C  X l - V O L T A G E  O F  R l  
C  X 2 - V 0 L T A G E  O F  R 2  
C  X 3 - C U R R E N T  O F  R l  
C  X 4 - C U R R E N T  O F  R 2  
C  X I V K - K N O T S  F O R  R l  
C  X I  V L ,  X I  V H '  - L O W E R  A N D  U P P E R  L I M I T S  O F  X I  I N  E A C H  I N T E R V A L  

c X 2 V L ,  X 2 V H  - L O W E R  A N D  U P P E R  L I M I T S  O F  X 2  I N  E A C H  I N T E R V A L  
c X 3 I L ,  X 3 I H  - L O W E R  A N D  U P P E R  L I M I T S  O F  X 3  I N  E A C H  I N T E R V A L  
c X 4 I L ,  X 4 I H  - L O W E R  A N D  U P P E R  L I M I T S  O F  X 4  I N  E A C H  I N T E R V A L  

C  
c 

E X T E R N A L  A U X  
D I M E N S I O N  X ( 4 > , X 1 ( 5 ) , X 2 ( 9 ) , X 3 < 5 ) , X 4 ( 9 ) , W A ( 2 1 ) , I P A R ( 2 ) ,  

1 X I V K ( 6 » . X 1 V L < 5 ) , X I V H < 5 ) , X 3 I L ( 5 ) , X 3 I H ( 5 ) , X 4 I L ( 9 ) ,  
1 X 4  I H ( 9 ) , X 2 V L ( 9 ) . X 2 V H ( 9 >  

D O U B L E  P R E C I S I O N  X , X I • X 2 , X 3 , X 4 , W A , E P S , X I V K , X 1 V L , X I V H ,  
1 X 3  I L , X 3 1 H , X 4 I L , X 4 I H , X 2 V L , X 2 V H  

C  
C  R E A D  I N  I N I T I A L  C O N D I T I O N S  
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R E A D ( 5 » 5 0 )  ( X K I ) »  1 = 1 . 5 )  
5 0  F O R M A T < 5 0 1 0 « 4 )  

R E A D ( 5 , 5 0 )  ( X 2 ( I ) *  1 = 1 , 9 )  
R E A D ( 5 » 5 0 )  ( X 3 ( I ) . 1 = 1 . 5 )  
R E  A O  ( 5 . 5 0 )  ( X 4 { I  I  . 1 = 1  . 9 )  

C  
C  R E A D  I N  K N O T S  F O R  R 1  

R E A 0 ( 5 . 7 0 )  (  X I  V K (  I  )  .  1 = 1  . 6  >  
7 0  F O R M A T ( 6 D 1 0 . 4 )  

C  
R E A D ( 5 » 5 0 )  ( X 3 I L ( I ) . 1 = 1 . 5 )  
R E A D ( 5 . 5 0 )  ( X 3 I H ( I ) . 1 = 1 . 5 )  

C  R E A D  I N  L O W E R  A N D  U P P E R  L I M I T S  O F  E A C H  I N T E R V A L  F O R  R 2  
R E A O < 5 . 8 0 )  (  X 4  I L <  I  )  . 1 = 1  . 9 )  

0 0  F 0 R M A T < 5 0 1 0 # 4 )  
R E A D ( 5 , 8 0 )  ( X 4 I H ( I ) . I = 1 . 9 )  
R E A D ( 5 . 8 0 )  { X 2 V L ( I ) • 1 = 1 . 9 »  
R E A D ( 5.a0) ( X 2 V H (I).1=1.9) 

C  
C  C A L C U L A T E  X I V L  A N D  X I V H  

D O  2 0 0  1 = 1 . 6  
J =  1 + 1  
X I V L ( I ) = X 1 V K ( I >  
X I  V H (  I  )  =  X 1 V K (  J  )  

2 0 0  C O N T I N U E  
W R I T E ( 6 , 1 0 0 )  ( X l ( I ) .  1 = 1 * 5 )  

1 0 0  F O R M A T  ( I H  .  5 D 2 0 . 8 )  
W R I T E ( 6 , 1 0 0 )  ( X 3 ( I ) ,  1 = 1 . 5 )  
W R I T E ( 6 , 1 0 0 )  ( X 2 ( I ) ,  1 = 1 . 9 )  
W R I T E ( 6 . 1 0 0 )  ( X 4 ( I ) .  1 = 1 . 9 )  
W R I T E  ( 6 . 3 0 0 )  ( X I V K ( I ) »  1  =  1 . 6 )  

3 0 0  F O R M A T C I H  .  6 D 2 0 . 8 )  
W R I T E ( 6 . 1 0 0 )  ( X I V L ( I ) . 1 = 1 . 5 )  
W R I T E C e . l O O )  ( X I V H ( I ) . 1 = 1 . 5 )  
W R I T E ( 6 , 1 0 0 )  ( X 3 I L ( I ) . 1 = 1 . 5 )  
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W R I T E ( 6 , 1 0 0 )  
W R I T E ( 6 . 1 0 0 )  
W R I T E ( 6 . 1 0 0 )  
W R I T E ( 6 f 1 0 0 )  
W R I T E ( 6 t l 0 0 )  
E P S = 1 , 0 D - 5  
N S I G  =  4  
N = 4  
I T M A X = 3 0 0  

( X 3 I H ( I  
(  X 2 V L {  I  
<  X 2 V H (  I  
< X 4 I L (  I  
( X 4 I H ( I  

1 = 1 , 5 )  
1 = 1 i 9 )  
1 = 1 . 9 )  
1 = 1 . 9 )  
1 = 1  , 9 )  

S T A R T  C O M P U T I N G  
D O  6 0  1 = 1 , 5  
D O  6 0  J = l , 9  
I P A R C 1 ) = I  
I P A R { 2 ) = J  
X ( 1 ) = X 1 ( I  )  
X C  2 ) = X 2 (  J )  
X ( 3 ) = X 3 ( I )  
X (  4 ) = X 4 (  J )  

C A L L  Z S Y S T M  ( A U X , E P S , N S I G , N , X , I T M A X , W A , I  P A R , I E R )  
C H E C K I N G  T H E  S O L U T I O N S  W H E T H E R  T H E Y  F A L L  W I T H I N  
T H E  I N T E R V A L  L I M I T S  
I F ( X ( 1 )  . L T e  X I V L ( I )  . O R .  X ( l )  . G T .  X I V H ( I ) )  G O  T O  6 0  
I F  ( X ( 2 )  . L T .  X 2 V L ( J )  . O R .  X ( 2 )  . G T .  X 2 V H ( J ) )  G O  T O  6 0  
I F < X ( 3 )  . L T .  X 3 I L ( I )  . O R .  X ( 3 ) * . G T .  X 3 I H ( I ) )  G O  T O  6 0  
I F ( X ( 4 )  . L T .  X 4 I L ( I >  . O R .  X ( 4 )  . G T .  X 4 I H ( I ) )  G O  T O  6 0  
I F ( X ( 1 )  •  G T  .  X 1 V L ( I )  .  A N D .  X (  1  )  . L T .  X 1 V H ( I ) )  G O  T O  9 0  
I F ( X ( 2 )  •  G T  #  X 2 V L { J )  .  A N D .  X ( 2 )  . L T .  X 2 V H ( J ) )  G O  T O  9 0  
I F ( X ( 3 )  .  G T  .  X 3 I L ( I )  •  A N D .  X ( 3 )  •  L T .  X 3 I H ( I ) )  G O  T O  9 0  
I F ( X ( 4 )  •  G T  .  X 4 I L ( I )  .  A N D .  X ( 4 )  . L T .  X 4 I H ( I ) )  G O  T O  9 0  
P R I N T  O U T  T H E  T R U E  S O L U T I O N S  

9 0  W R I T E ( 6 , 1 0 0 0 )  I E R , I T M A X • I , J , X  
1 0 0 0  F O R M A T d H  ,  2  I  4  ,  1  O X  ,  •  T S (  •  ,  2  1 4  ,  •  )  =  •  ,  4 D 2 0 .  8  )  
6 0  C O N T I N U E  
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S T O P  
E N D  
F U N C T I O N  A U X ( X . M , I P A R )  
D I M E N S I O N  X ( 1 ) » I P A R ( 2 )  

C  I N D I C A T E  5  S P L I N E  S E G M E N T S  F O R  R 1  
I N T E G E R  I I ( 5 > / 1 . 2 . 3 . 4 , 5 /  

C  I N D I C A T E  9  S P L I N E  S E G M E N T S  F O R  R 2  
I N T E G E R  J J ( 9 * / 6 , 7 , 8 . 9 , 1 0 , 1 1 , 1 2 , 1 3 . 1 4 /  
D O U B L E  P R E C I S I O N  A U X . X  
I  =  I P A R < 1  I  
J = I P A R ( 2 )  
G O  T O  ( 1 , 2 . 3 . 4 ) , M  

1  N = I I ( I )  
G O  T O  1 0  

2  N = J J < J >  
G O  T O  1 0  

3  N = 1 5  
G O  T O  1 0  0 0  

ON 
4  N = 1 6  

G O  T O  1 0  
1 0  G O  T O  ( 1 1 , 1 2 . 1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0 , 2 1 , 2 2 , 2 3 , 2 4 , 2 5 , 2 6 ) , N  

C  1 1  T O  1 5  F R O M  L A W  O F  E L E M E N T  O F  R 1  
1 1  A U X = X ( 3 ) - ( ( 1 . 5 2 2 D 2 * X ( 1 ) - 9 • 5 1 7 D 1 ) * X < 1 ) + 1 . 7 4 7 D l ) * X ( 1 ) - 4 . 0 7 4 D - 4  

R E  T U R N  
1 2  A U X = X ( 3 ) - ( ( 4 . 5 9 2 D 1 * ( X ( 1 ) - 1 . 7 1 1 0 - 1 ) - 1 • 7 0 6 0 1 ) * ( X ( 1 ) - 1 • 7 1 I D - 1 >  

1 - 1 « 7 3  4 0 0  ) * ( X ( 1  ) - 1 . 7 l l D - l ) - 0 « 9 6 5 5 0 0  
R E T U R N  

1 3  A U X = X ( 3 ) - ( ( - 5 . 2 3 7 D 1 * ( X ( 1 ) - 4 , 0 7 5 D - 1 ) + 1 . 5 5 D l ) * ( X ( l ) - 4 # 0 7 5 D - l )  
1 - 2 . 1 0 1 D 0 ) * ( X ( 1 ) - 4 . 0 7 5 0 - 1 ) - 0 . 2 0 9 D O  

R E T U R N  
1 4  A U X = X ( 3 ) - ( ( - 1 . 6 7 9 D 0 * ( X ( l ) - 0 . 4 9 l 9 D O ) + 2 . 2 3 7 D O ) * ( X ( l ) - 0 . 4 9 1 9 0 0 )  

1 - 0 . 6 0 3 4 D 0  ) * ( X ( 1 ) - 0 . 4 9 1 9 D 0 ) - 0 . 1 1 0 6 0 0  
R E  T U R N  

1 5  A U X = X ( 3 ) - ( ( 7 . 5 9 D 1 » ( X ( 1 ) - 0 • 7 7 9 6 D 0 ) + 0 . 7 8 7 4 D O ) • ( X ( 1 ) - 0 . 7 7 9 6 D O )  
1 + 0 . 2 6  6 5 0 0  ) » ( X ( 1 ) - 0 . 7 7 9 6 D 0 ) - 0 . 0 8 2 1 1  
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